

vdirsyncer

	Documentation [https://vdirsyncer.pimutils.org/en/stable/]

	Source code [https://github.com/pimutils/vdirsyncer]

Vdirsyncer is a command-line tool for synchronizing calendars and addressbooks
between a variety of servers and the local filesystem. The most popular usecase
is to synchronize a server with a local folder and use a set of other
programs to change the local events and contacts.
Vdirsyncer can then synchronize those changes back to the server.

However, vdirsyncer is not limited to synchronizing between clients and
servers. It can also be used to synchronize calendars and/or addressbooks
between two servers directly.

It aims to be for calendars and contacts what OfflineIMAP [http://offlineimap.org/] is for emails.

Users

	When do I need Vdirsyncer?

	Installation

	Tutorial

	SSL and certificate validation

	Storing passwords

	Syncing with read-only storages

	Full configuration manual

	Other tutorials

	Known Problems

Developers

	Contributing to this project

	The Vdir Storage Format

General

	Packaging guidelines

	Support and Contact

	Changelog

	Credits and License

	Donations

When do I need Vdirsyncer?

Why not Dropbox + todo.txt?

Projects like todo.txt [http://todotxt.com/] criticize the complexity of
modern productivity apps, and that rightfully. So they set out to create a new,
super-simple, human-readable format, such that vim suffices for viewing the raw
data. However, when they’re faced with the question how to synchronize that
data across multiple devices, they seemed to have reached the dead end with
their novel idea: “Let’s just use Dropbox”.

What does file sync software do if both files have changed since the last sync?
The answer is to ignore the question, just sync as often as possible, and hope
for the best. Because if it comes to a sync conflict, most sync services are
not daring to merge files, and create two copies on each computer instead.
Merging the two task lists is left to the user.

A better idea would’ve been to use git to synchronize the todo.txt
file, which is at least able to resolve some basic conflicts.

Why not file sync (Dropbox, git, …) + vdir?

Since vdirs are just a bunch of files, it is obvious to try file
synchronization for synchronizing your data between multiple computers, such
as:

	Syncthing [https://syncthing.net/]

	Dropbox [https://dropbox.com/] or one of the gajillion services like it

	unison [https://www.cis.upenn.edu/~bcpierce/unison/]

	Just git with a sshd.

The disadvantages of those solutions largely depend on the exact file sync
program chosen:

	Like with todo.txt, Dropbox and friends are obviously agnostic/unaware of
the files’ contents. If a file has changed on both sides, Dropbox just copies
both versions to both sides.

This is a good idea if the user is directly interfacing with the file system
and is able to resolve conflicts themselves. Here it might lead to
erroneous behavior with e.g. khal, since there are now two events with
the same UID.

This point doesn’t apply to git: It has very good merging capabilities,
better than what vdirsyncer currently has.

	Such a setup doesn’t work at all with smartphones. Vdirsyncer, on the other
hand, synchronizes with CardDAV/CalDAV servers, which can be accessed with
e.g. DAVx⁵ [https://www.davx5.com/] or the apps by dmfs [https://dmfs.org/].

Installation

OS/distro packages

The following packages are community-contributed and were up-to-date at the
time of writing:

	Arch Linux [https://archlinux.org/packages/extra/any/vdirsyncer/]

	Ubuntu and Debian, x86_64-only [https://packagecloud.io/pimutils/vdirsyncer] (packages also exist
in the official repositories but may be out of date)

	GNU Guix [https://packages.guix.gnu.org/packages/vdirsyncer/]

	macOS (homebrew) [https://formulae.brew.sh/formula/vdirsyncer]

	NetBSD [https://ftp.netbsd.org/pub/pkgsrc/current/pkgsrc/time/py-vdirsyncer/index.html]

	OpenBSD [http://ports.su/productivity/vdirsyncer]

	Slackware (SlackBuild at Slackbuilds.org) [https://slackbuilds.org/repository/15.0/network/vdirsyncer/]

We only support the latest version of vdirsyncer, which is at the time of this
writing 0.19.3.dev14+g301aa0e. Please do not file bugs if you use an older
version.

Some distributions have multiple release channels. Debian and Fedora for
example have a “stable” release channel that ships an older version of
vdirsyncer. Those versions aren’t supported either.

If there is no suitable package for your distribution, you’ll need to
install vdirsyncer manually. There is an easy
command to copy-and-paste for this as well, but you should be aware of its
consequences.

Manual installation

If your distribution doesn’t provide a package for vdirsyncer, you still can
use Python’s package manager “pip”. First, you’ll have to check that the
following things are installed:

	Python 3.7 to 3.11 and pip.

	libxml and libxslt

	zlib

	Linux or macOS. Windows is not supported, see issue #535 [https://github.com/pimutils/vdirsyncer/issues/535].

On Linux systems, using the distro’s package manager is the best
way to do this, for example, using Ubuntu:

sudo apt-get install libxml2 libxslt1.1 zlib1g python3

Then you have several options. The following text applies for most Python
software by the way.

pipx: The clean, easy way

pipx [https://github.com/pipxproject/pipx] is a new package manager for Python-based software that automatically
sets up a virtual environment for each program you install. Assuming you have
it installed on your operating system, you can do:

pipx install vdirsyncer

and ~/.local/pipx/venvs/vdirsyncer will be your new vdirsyncer installation. To
update vdirsyncer to the latest version:

pipx upgrade vdirsyncer

If you’re done with vdirsyncer, you can do:

pipx uninstall vdirsyncer

and vdirsyncer will be uninstalled, including its dependencies.

The dirty, easy way

If pipx is not available on your distirbution, the easiest way to install
vdirsyncer at this point would be to run:

pip install --ignore-installed vdirsyncer

	--ignore-installed is to work around Debian’s potentially broken packages
(see Requests-related ImportErrors).

This method has a major flaw though: Pip doesn’t keep track of the files it
installs. Vdirsyncer’s files would be located somewhere in
~/.local/lib/python*, but you can’t possibly know which packages were
installed as dependencies of vdirsyncer and which ones were not, should you
decide to uninstall it. In other words, using pip that way would pollute your
home directory.

The clean, hard way

There is a way to install Python software without scattering stuff across
your filesystem: virtualenv [https://virtualenv.readthedocs.io/]. There are a lot of resources on how to use it,
the simplest possible way would look something like:

virtualenv ~/vdirsyncer_env
~/vdirsyncer_env/bin/pip install vdirsyncer
alias vdirsyncer="~/vdirsyncer_env/bin/vdirsyncer"

You’ll have to put the last line into your .bashrc or .bash_profile.

This method has two advantages:

	It separately installs all Python packages into ~/vdirsyncer_env/,
without relying on the system packages. This works around OS- or
distro-specific issues.

	You can delete ~/vdirsyncer_env/ to uninstall vdirsyncer entirely.

Tutorial

Before starting, consider if you actually need vdirsyncer. There
are better alternatives available for particular usecases.

Installation

See Installation.

Configuration

Note

	The config.example from the repository [https://github.com/pimutils/vdirsyncer/blob/main/config.example]
contains a very terse version of this.

	In this example we set up contacts synchronization, but calendar sync
works almost the same. Just swap type = "carddav"
for type = "caldav" and fileext = ".vcf"
for fileext = ".ics".

	Take a look at the Known Problems page if anything doesn’t work like
planned.

By default, vdirsyncer looks for its configuration file in the following
locations:

	The file pointed to by the VDIRSYNCER_CONFIG environment variable.

	~/.vdirsyncer/config.

	$XDG_CONFIG_HOME/vdirsyncer/config, which is normally
~/.config/vdirsyncer/config. See the XDG-Basedir [http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html#variables] specification.

The config file should start with a general section,
where the only required parameter is status_path. The following is a
minimal example:

[general]
status_path = "~/.vdirsyncer/status/"

After the general section, an arbitrary amount of pair and storage sections
might come.

In vdirsyncer, synchronization is always done between two storages. Such
storages are defined in storage sections, and which
pairs of storages should actually be synchronized is defined in pair
section. This format is copied from OfflineIMAP, where storages
are called repositories and pairs are called accounts.

The following example synchronizes ownCloud’s addressbooks to ~/.contacts/:

[pair my_contacts]
a = "my_contacts_local"
b = "my_contacts_remote"
collections = ["from a", "from b"]

[storage my_contacts_local]
type = "filesystem"
path = "~/.contacts/"
fileext = ".vcf"

[storage my_contacts_remote]
type = "carddav"

We can simplify this URL here as well. In theory it shouldn't matter.
url = "https://owncloud.example.com/remote.php/carddav/"
username = "bob"
password = "asdf"

Note

Configuration for other servers can be found at Servers.

After running vdirsyncer discover and vdirsyncer sync, ~/.contacts/
will contain subfolders for each addressbook, which in turn will contain a
bunch of .vcf files which all contain a contact in VCARD format each.
You can modify their contents, add new ones and delete some 1, and your
changes will be synchronized to the CalDAV server after you run vdirsyncer
sync again. For further reference, it uses the storages filesystem
and carddav.

However, if new collections are created on the server, it will not
automatically start synchronizing those 2. You need to run vdirsyncer
discover again to re-fetch this list instead.

	1

	You’ll want to use a helper program for this.

	2

	Because collections are added rarely, and checking for this case before
every synchronization isn’t worth the overhead.

More Configuration

Conflict resolution

What if the same item is changed on both sides? What should vdirsyncer
do? Three options are currently provided:

	vdirsyncer displays an error message (the default);

	vdirsyncer chooses one alternative version over the other;

	vdirsyncer starts a command of your choice that is supposed to merge the two alternative versions.

Options 2 and 3 require adding a "conflict_resolution"
parameter to the pair section. Option 2 requires giving either "a
wins" or "b wins" as value to the parameter:

[pair my_contacts]
...
conflict_resolution = "b wins"

Earlier we wrote that b = "my_contacts_remote", so when vdirsyncer encounters
the situation where an item changed on both sides, it will simply overwrite the
local item with the one from the server.

Option 3 requires specifying as value of "conflict_resolution" an
array starting with "command" and containing paths and arguments
to a command. For example:

[pair my_contacts]
...
conflict_resolution = ["command", "vimdiff"]

In this example, vimdiff <a> will be called with <a> and
 being two temporary files containing the conflicting
files. The files need to be exactly the same when the command
returns. More arguments can be passed to the command by adding more
elements to the array.

See Pair Section for the reference documentation.

Metadata synchronization

Besides items, vdirsyncer can also synchronize metadata like the addressbook’s
or calendar’s “human-friendly” name (internally called “displayname”) or the
color associated with a calendar. For the purpose of explaining this feature,
let’s switch to a different base example. This time we’ll synchronize calendars:

[pair my_calendars]
a = "my_calendars_local"
b = "my_calendars_remote"
collections = ["from a", "from b"]
metadata = ["color"]

[storage my_calendars_local]
type = "filesystem"
path = "~/.calendars/"
fileext = ".ics"

[storage my_calendars_remote]
type = "caldav"

url = "https://owncloud.example.com/remote.php/caldav/"
username = "bob"
password = "asdf"

Run vdirsyncer discover for discovery. Then you can use vdirsyncer
metasync to synchronize the color property between your local calendars
in ~/.calendars/ and your ownCloud. Locally the color is just represented
as a file called color within the calendar folder.

More information about collections

“Collection” is a collective term for addressbooks and calendars. Each
collection from a storage has a “collection name”, a unique identifier for each
collection. In the case of filesystem-storage, this is the name of the
directory that represents the collection, in the case of the DAV-storages this
is the last segment of the URL. We use this identifier in the collections
parameter in the pair-section.

This identifier doesn’t change even if you rename your calendar in whatever UI
you have, because that only changes the so-called “displayname” property 3.
On some servers (iCloud, Google) this identifier is randomly generated and has
no correlation with the displayname you chose.

	3

	Which you can also synchronize with metasync using metadata =
["displayname"].

There are three collection names that have a special meaning:

	"from a", "from b": A placeholder for all collections that can be
found on side A/B when running vdirsyncer discover.

	null: The parameters give to the storage are exact and require no discovery.

The last one requires a bit more explanation. Assume this config which
synchronizes two directories of addressbooks:

[pair foobar]
a = "foo"
b = "bar"
collections = ["from a", "from b"]

[storage foo]
type = "filesystem"
fileext = ".vcf"
path = "./contacts_foo/"

[storage bar]
type = "filesystem"
fileext = ".vcf"
path = "./contacts_bar/"

As we saw previously this will synchronize all collections in
./contacts_foo/ with each same-named collection in ./contacts_bar/. If
there’s a collection that exists on one side but not the other, vdirsyncer will
ask whether to create that folder on the other side.

If we set collections = null, ./contacts_foo/ and ./contacts_bar/
are no longer treated as folders with collections, but as collections
themselves. This means that ./contacts_foo/ and ./contacts_bar/ will
contain .vcf-files, not subfolders that contain .vcf-files.

This is useful in situations where listing all collections fails because your
DAV-server doesn’t support it, for example. In this case, you can set url
of your carddav- or caldav-storage to a URL that points
to your CalDAV/CardDAV collection directly.

Note that not all storages support the null-collection, for example
google_contacts and google_calendar don’t.

Advanced collection configuration (server-to-server sync)

The examples above are good enough if you want to synchronize a remote server
to a previously empty disk. However, even more trickery is required when you
have two servers with already existing collections which you want to
synchronize.

The core problem in this situation is that vdirsyncer pairs collections by
collection name by default (see definition in previous section, basically a
foldername or a remote UUID). When you have two servers, those collection names
may not line up as nicely. Suppose you created two calendars “Test”, one on a
NextCloud server and one on iCloud, using their respective web interfaces. The
URLs look something like this:

NextCloud: https://example.com/remote.php/dav/calendars/user/test/
iCloud: https://p-XX.caldav.icloud.com/YYY/calendars/3b4c9995-5c67-4021-9fa0-be4633623e1c

Those are two DAV calendar collections. Their collection names will be test
and 3b4c9995-5c67-4021-9fa0-be4633623e1c respectively, so you don’t have a
single name you can address them both with. You will need to manually “pair”
(no pun intended) those collections up like this:

[pair doublecloud]
a = "my_nextcloud"
b = "my_icloud"
collections = [["mytest", "test", "3b4c9995-5c67-4021-9fa0-be4633623e1c"]]

mytest gives that combination of calendars a nice name you can use when
talking about it, so you would use vdirsyncer sync doublecloud/mytest to
say: “Only synchronize these two storages, nothing else that may be
configured”.

Note

Why not use displaynames?

You may wonder why vdirsyncer just couldn’t figure this out by itself. After
all, you did name both collections “Test” (which is called “the
displayname”), so why not pair collections by that value?

There are a few problems with this idea:

	Two calendars may have the same exact displayname.

	A calendar may not have a (non-empty) displayname.

	The displayname might change. Either you rename the calendar, or the
calendar renames itself because you change a language setting.

In the end, that property was never designed to be parsed by machines.

SSL and certificate validation

All SSL configuration is done per-storage.

Pinning by fingerprint

To pin the certificate by fingerprint:

[storage foo]
type = "caldav"
...
verify_fingerprint = "94:FD:7A:CB:50:75:A4:69:82:0A:F8:23:DF:07:FC:69:3E:CD:90:CA"

SHA256-Fingerprints can be used. CA validation is disabled when pinning a
fingerprint.

You can use the following command for obtaining a SHA-1 fingerprint:

echo -n | openssl s_client -connect unterwaditzer.net:443 | openssl x509 -noout -fingerprint

However, please consider using Let’s Encrypt [https://letsencrypt.org/] such
that you can forget about all of that. It is easier to deploy a free
certificate from them than configuring all of your clients to accept the
self-signed certificate.

Custom root CAs

To point vdirsyncer to a custom set of root CAs:

[storage foo]
type = "caldav"
...
verify = "/path/to/cert.pem"

Vdirsyncer uses the aiohttp [https://docs.aiohttp.org/en/stable/index.html] library, which uses the default `ssl.SSLContext
https://docs.python.org/3/library/ssl.html#ssl.SSLContext`_ by default.

There are cases where certificate validation fails even though you can access
the server fine through e.g. your browser. This usually indicates that your
installation of python or the aiohttp or library is somehow broken. In
such cases, it makes sense to explicitly set verify or
verify_fingerprint as shown above.

Client Certificates

Client certificates may be specified with the auth_cert parameter. If the
key and certificate are stored in the same file, it may be a string:

[storage foo]
type = "caldav"
...
auth_cert = "/path/to/certificate.pem"

If the key and certificate are separate, a list may be used:

[storage foo]
type = "caldav"
...
auth_cert = ["/path/to/certificate.crt", "/path/to/key.key"]

Storing passwords

Changed in version 0.7.0: Password configuration got completely overhauled.

Vdirsyncer can fetch passwords from several sources other than the config file.

Command

Say you have the following configuration:

[storage foo]
type = "caldav"
url = ...
username = "foo"
password = "bar"

But it bugs you that the password is stored in cleartext in the config file.
You can do this:

[storage foo]
type = "caldav"
url = ...
username = "foo"
password.fetch = ["command", "~/get-password.sh", "more", "args"]

You can fetch the username as well:

[storage foo]
type = "caldav"
url = ...
username.fetch = ["command", "~/get-username.sh"]
password.fetch = ["command", "~/get-password.sh"]

Or really any kind of parameter in a storage section.

You can also pass the command as a string to be executed in a shell:

[storage foo]
...
password.fetch = ["shell", "~/.local/bin/get-my-password | head -n1"]

With pass [https://www.passwordstore.org/] for example, you might find yourself writing something like this in
your configuration file:

password.fetch = ["command", "pass", "caldav"]

Accessing the system keyring

As shown above, you can use the command strategy to fetch your credentials
from arbitrary sources. A very common usecase is to fetch your password from
the system keyring.

The keyring [https://github.com/jaraco/keyring/] Python package contains a command-line utility for fetching
passwords from the OS’s password store. Installation:

pip install keyring

Basic usage:

password.fetch = ["command", "keyring", "get", "example.com", "foouser"]

Password Prompt

You can also simply prompt for the password:

[storage foo]
type = "caldav"
username = "myusername"
password.fetch = ["prompt", "Password for CalDAV"]

Syncing with read-only storages

If you want to subscribe to a public, read-only WebCAL [https://en.wikipedia.org/wiki/Webcal]-calendar but neither your server nor
your calendar apps support that (or support it insufficiently), vdirsyncer can
be used to synchronize such a public calendar A with a new calendar B
of your own and keep B updated.

Step 1: Create the target calendar

First you need to create the calendar you want to sync the WebCAL-calendar
with. Most servers offer a web interface for this. You then need to note the
CalDAV URL of your calendar. Note that this URL should directly point to the
calendar you just created, which means you would have one such URL for each
calendar you have.

Step 2: Creating the config

Paste this into your vdirsyncer config:

[pair holidays]
a = "holidays_public"
b = "holidays_private"
collections = null

[storage holidays_public]
type = "http"
The URL to your iCalendar file.
url = "..."

[storage holidays_private]
type = "caldav"
The direct URL to your calendar.
url = "..."
The credentials to your CalDAV server
username = "..."
password = "..."

Then run vdirsyncer discover holidays and vdirsyncer sync holidays, and
your previously created calendar should be filled with events.

Step 3: The partial_sync parameter

New in version 0.14.

You may get into a situation where you want to hide or modify some events from
your holidays calendar. If you try to do that at this point, you’ll notice
that vdirsyncer will revert any changes you’ve made after a few times of
running sync. This is because vdirsyncer wants to keep everything in sync,
and it can’t synchronize changes to the public holidays-calendar because it
doesn’t have the rights to do so.

For such purposes you can set the partial_sync parameter to ignore:

[pair holidays]
a = "holidays_public"
b = "holidays_private"
collections = null
partial_sync = ignore

See the config docs for more information.

Full configuration manual

Vdirsyncer uses an ini-like format for storing its configuration. All values
are JSON, invalid JSON will get interpreted as string:

x = "foo" # String
x = foo # Shorthand for same string

x = 42 # Integer

x = ["a", "b", "c"] # List of strings

x = true # Boolean
x = false

x = null # Also known as None

General Section

[general]
status_path = ...

	status_path: A directory where vdirsyncer will store some additional data
for the next sync.

The data is needed to determine whether a new item means it has been added on
one side or deleted on the other. Relative paths will be interpreted as
relative to the configuration file’s directory.

See A simple synchronization algorithm [https://unterwaditzer.net/2016/sync-algorithm.html] for what exactly is in
there.

Pair Section

[pair pair_name]
a = ...
b = ...
#collections = null
#conflict_resolution = null

	Pair names can consist of any alphanumeric characters and the underscore.

	a and b reference the storages to sync by their names.

	collections: A list of collections to synchronize when vdirsyncer
sync is executed. See also More information about collections.

The special values "from a" and "from b", tell vdirsyncer to try
autodiscovery on a specific storage.

If the collection you want to sync doesn’t have the same name on each side,
you may also use a value of the form ["config_name", "name_a", "name_b"].
This will synchronize the collection name_a on side A with the collection
name_b on side B. The config_name will be used for representation in
CLI arguments and logging.

Examples:

	collections = ["from b", "foo", "bar"] makes vdirsyncer synchronize the
collections from side B, and also the collections named “foo” and “bar”.

	collections = ["from b", "from a"] makes vdirsyncer synchronize all
existing collections on either side.

	collections = [["bar", "bar_a", "bar_b"], "foo"] makes vdirsyncer
synchronize bar_a from side A with bar_b from side B, and also
synchronize foo on both sides with each other.

	conflict_resolution: Optional, define how conflicts should be handled. A
conflict occurs when one item (event, task) changed on both sides since the
last sync. See also Conflict resolution.

Valid values are:

	null, where an error is shown and no changes are done.

	"a wins" and "b wins", where the whole item is taken from one side.

	["command", "vimdiff"]: vimdiff <a> will be called where
<a> and are temporary files that contain the item of each side
respectively. The files need to be exactly the same when the command
returns.

	vimdiff can be replaced with any other command. For example, in POSIX
["command", "cp"] is equivalent to "a wins".

	Additional list items will be forwarded as arguments. For example,
["command", "vimdiff", "--noplugin"] runs vimdiff --noplugin.

Vdirsyncer never attempts to “automatically merge” the two items.

	partial_sync: Assume A is read-only, B not. If you change items on B,
vdirsyncer can’t sync the changes to A. What should happen instead?

	error: An error is shown.

	ignore: The change is ignored. However: Events deleted in B still
reappear if they’re updated in A.

	revert (default): The change is reverted on next sync.

See also Syncing with read-only storages.

	metadata: Metadata keys that should be synchronized when vdirsyncer
metasync is executed. Example:

metadata = ["color", "displayname", "description", "order"]

This synchronizes the following properties:

	color: http://apple.com/ns/ical/:calendar-color

	displayname: DAV:displayname

	description: CalDAV:calendar-description and CardDAV:addressbook-description

	order: http://apple.com/ns/ical/:calendar-order

The conflict_resolution parameter applies for these properties too.

Storage Section

[storage storage_name]
type = ...

	Storage names can consist of any alphanumeric characters and the underscore.

	type defines which kind of storage is defined. See Supported Storages.

	read_only defines whether the storage should be regarded as a read-only
storage. The value true means synchronization will discard any changes
made to the other side. The value false implies normal 2-way
synchronization.

	Any further parameters are passed on to the storage class.

Supported Storages

CalDAV and CardDAV

Note

Please also see Servers, as some servers may not work
well.

	
caldav

	CalDAV.

[storage example_for_caldav]
type = "caldav"
#start_date = null
#end_date = null
#item_types = []
url = "..."
#username = ""
#password = ""
#verify = /path/to/custom_ca.pem
#auth = null
#useragent = "vdirsyncer/0.16.4"
#verify_fingerprint = null
#auth_cert = null

You can set a timerange to synchronize with the parameters start_date
and end_date. Inside those parameters, you can use any Python
expression to return a valid datetime.datetime object. For
example, the following would synchronize the timerange from one year in the
past to one year in the future:

start_date = "datetime.now() - timedelta(days=365)"
end_date = "datetime.now() + timedelta(days=365)"

Either both or none have to be specified. The default is to synchronize
everything.

You can set item_types to restrict the kind of items you want to
synchronize. For example, if you want to only synchronize events (but don’t
download any tasks from the server), set item_types = ["VEVENT"]. If
you want to synchronize events and tasks, but have some VJOURNAL items
on the server you don’t want to synchronize, use item_types = ["VEVENT",
"VTODO"].

	Parameters

	
	start_date – Start date of timerange to show, default -inf.

	end_date – End date of timerange to show, default +inf.

	item_types – Kind of items to show. The default, the empty list, is
to show all. This depends on particular features on the server, the
results are not validated.

	url – Base URL or an URL to a calendar.

	username – Username for authentication.

	password – Password for authentication.

	verify – Optional. Local path to a self-signed SSL certificate.
See SSL and certificate validation for more information.

	verify_fingerprint – Optional. SHA256 fingerprint of the expected
server certificate. See SSL and certificate validation for more information.

	auth – Optional. Either basic, digest or guess. The
default is preemptive Basic auth, sending credentials even if server
didn’t request them. This saves from an additional roundtrip per
request. Consider setting guess if this causes issues with your
server.

	auth_cert – Optional. Either a path to a certificate with a client
certificate and the key or a list of paths to the files with them.

	useragent – Default vdirsyncer.

	
carddav

	CardDAV.

[storage example_for_carddav]
type = "carddav"
url = "..."
#username = ""
#password = ""
#verify = /path/to/custom_ca.pem
#auth = null
#useragent = "vdirsyncer/0.16.4"
#verify_fingerprint = null
#auth_cert = null

	Parameters

	
	url – Base URL or an URL to an addressbook.

	username – Username for authentication.

	password – Password for authentication.

	verify – Optional. Local path to a self-signed SSL certificate.
See SSL and certificate validation for more information.

	verify_fingerprint – Optional. SHA256 fingerprint of the expected
server certificate. See SSL and certificate validation for more information.

	auth – Optional. Either basic, digest or guess. The
default is preemptive Basic auth, sending credentials even if
server didn’t request them. This saves from an additional
roundtrip per request. Consider setting guess if this
causes issues with your server.

	auth_cert – Optional. Either a path to a certificate with a client
certificate and the key or a list of paths to the files
with them.

	useragent – Default vdirsyncer.

Google

Vdirsyncer supports synchronization with Google calendars with the restriction
that VTODO files are rejected by the server.

Synchronization with Google contacts is less reliable due to negligence of
Google’s CardDAV API. Google’s CardDAV implementation is allegedly a disaster
in terms of data safety. See this blog post [https://evertpot.com/google-carddav-issues/] for the details. Always back
up your data.

Another caveat is that Google group labels are not synced with vCard’s
CATEGORIES [https://www.rfc-editor.org/rfc/rfc6350#section-6.7.1] property
(also see issue #814 [https://github.com/pimutils/vdirsyncer/issues/814] and
upstream issue #36761530 [https://issuetracker.google.com/issues/36761530]
for reference) and the
BDAY [https://www.rfc-editor.org/rfc/rfc6350#section-6.2.5] property is not
synced when only partial date information is present (e.g. the year is missing).

At first run you will be asked to authorize application for Google account
access.

To use this storage type, you need to install some additional dependencies:

pip install vdirsyncer[google]

Furthermore you need to register vdirsyncer as an application yourself to
obtain client_id and client_secret, as it is against Google’s Terms of
Service to hardcode those into opensource software [googleterms]:

	Go to the Google API Manager [https://console.developers.google.com]

	Create a new project under any name.

	Within that project, enable the “CalDAV” and “CardDAV” APIs (not the
Calendar and Contacts APIs, those are different and won’t work). There should
be a search box where you can just enter those terms.

	In the sidebar, select “Credentials”, then “Create Credentials” and create a
new “OAuth Client ID”.

You’ll be prompted to create a OAuth consent screen first. Fill out that
form however you like.

After setting up the consent screen, finish creating the new “OAuth Client
ID’. The correct application type is “Desktop application”.

	Finally you should have a Client ID and a Client secret. Provide these in
your storage config.

The token_file parameter should be a path to a file where vdirsyncer can
later store authentication-related data. You do not need to create the file
itself or write anything to it.

	googleterms

	See ToS [https://developers.google.com/terms/?hl=th],
section “Confidential Matters”.

Note

You need to configure which calendars Google should offer vdirsyncer using
a secret settings page [https://calendar.google.com/calendar/syncselect].

	
google_calendar

	Google calendar.

[storage example_for_google_calendar]
type = "google_calendar"
token_file = "..."
client_id = "..."
client_secret = "..."
#start_date = null
#end_date = null
#item_types = []

Please refer to caldav regarding the item_types and timerange parameters.

	Parameters

	
	token_file – A filepath where access tokens are stored.

	client_id/client_secret – OAuth credentials, obtained from the Google
API Manager.

	
google_contacts

	Google contacts.

[storage example_for_google_contacts]
type = "google_contacts"
token_file = "..."
client_id = "..."
client_secret = "..."

	Parameters

	
	token_file – A filepath where access tokens are stored.

	client_id/client_secret – OAuth credentials, obtained from the Google
API Manager.

The current flow is not ideal, but Google has deprecated the previous APIs used
for this without providing a suitable replacement. See issue #975 [https://github.com/pimutils/vdirsyncer/issues/975] for discussion
on the topic.

Local

	
filesystem

	Saves each item in its own file, given a directory.

[storage example_for_filesystem]
type = "filesystem"
path = "..."
fileext = "..."
#encoding = "utf-8"
#post_hook = null
#fileignoreext = ".tmp"

Can be used with khal [http://lostpackets.de/khal/]. See The Vdir Storage Format for
a more formal description of the format.

Directories with a leading dot are ignored to make usage of e.g. version
control easier.

	Parameters

	
	path – Absolute path to a vdir/collection. If this is used in
combination with the collections parameter in a pair-section, this
should point to a directory of vdirs instead.

	fileext – The file extension to use (e.g. .txt). Contained in the
href, so if you change the file extension after a sync, this will
trigger a re-download of everything (but should not cause data-loss
of any kind). To be compatible with the vset format you have
to either use .vcf or .ics. Note that metasync won’t work
if you use an empty string here.

	encoding – File encoding for items, both content and filename.

	post_hook – A command to call for each item creation and
modification. The command will be called with the path of the
new/updated file.

	fileeignoreext – The file extention to ignore. It is only useful
if fileext is set to the empty string. The default is .tmp.

	
singlefile

	Save data in single local .vcf or .ics file.

The storage basically guesses how items should be joined in the file.

New in version 0.1.6.

Note

This storage is very slow, and that is unlikely to change. You should
consider using filesystem if it fits your usecase.

	Parameters

	
	path – The filepath to the file to be written to. If collections are
used, this should contain %s as a placeholder for the collection
name.

	encoding – Which encoding the file should use. Defaults to UTF-8.

Example for syncing with caldav:

[pair my_calendar]
a = my_calendar_local
b = my_calendar_remote
collections = ["from a", "from b"]

[storage my_calendar_local]
type = "singlefile"
path = ~/.calendars/%s.ics

[storage my_calendar_remote]
type = "caldav"
url = https://caldav.example.org/
#username =
#password =

Example for syncing with caldav using a null collection:

[pair my_calendar]
a = my_calendar_local
b = my_calendar_remote

[storage my_calendar_local]
type = "singlefile"
path = ~/my_calendar.ics

[storage my_calendar_remote]
type = "caldav"
url = https://caldav.example.org/username/my_calendar/
#username =
#password =

Read-only storages

These storages don’t support writing of their items, consequently read_only
is set to true by default. Changing read_only to false on them
leads to an error.

	
http

	Use a simple .ics file (or similar) from the web.
webcal://-calendars are supposed to be used with this, but you have to
replace webcal:// with http://, or better, https://.

[pair holidays]
a = holidays_local
b = holidays_remote
collections = null

[storage holidays_local]
type = "filesystem"
path = ~/.config/vdir/calendars/holidays/
fileext = .ics

[storage holidays_remote]
type = "http"
url = https://example.com/holidays_from_hicksville.ics

Too many WebCAL providers generate UIDs of all VEVENT-components
on-the-fly, i.e. all UIDs change every time the calendar is downloaded.
This leads many synchronization programs to believe that all events have
been deleted and new ones created, and accordingly causes a lot of
unnecessary uploads and deletions on the other side. Vdirsyncer completely
ignores UIDs coming from http and will replace them with a hash
of the normalized item content.

	Parameters

	
	url – URL to the .ics file.

	username – Username for authentication.

	password – Password for authentication.

	verify – Optional. Local path to a self-signed SSL certificate.
See SSL and certificate validation for more information.

	verify_fingerprint – Optional. SHA256 fingerprint of the expected
server certificate. See SSL and certificate validation for more information.

	auth – Optional. Either basic, digest or guess. The
default is preemptive Basic auth, sending credentials even if server
didn’t request them. This saves from an additional roundtrip per
request. Consider setting guess if this causes issues with your
server.

	auth_cert – Optional. Either a path to a certificate with a client
certificate and the key or a list of paths to the files with them.

	useragent – Default vdirsyncer.

Other tutorials

The following section contains tutorials not explicitly about any particular
core function of vdirsyncer. They usually show how to integrate vdirsyncer with
third-party software. Because of that, it may be that the information regarding
that other software only applies to specific versions of them.

Note

Please contribute your own tutorials too! Pages are
often only stubs and are lacking full examples.

Client applications

	Vdirsyncer with Claws Mail

	Running as a systemd.timer

	Todoman

Further applications, with missing pages:

	khal [http://lostpackets.de/khal/], a CLI calendar application supporting vdir. You can use
filesystem with it.

	Many graphical calendar apps such as dayplanner [http://www.day-planner.org/], Orage [https://gitlab.xfce.org/apps/orage] or rainlendar [http://www.rainlendar.net/] save
a calendar in a single .ics file. You can use singlefile with
those.

	khard [https://github.com/scheibler/khard/], a commandline addressbook supporting vdir. You can use
filesystem with it.

	contactquery.c [https://github.com/t-8ch/snippets/blob/master/contactquery.c], a small program explicitly written for querying vdirs from
mutt.

	mates [https://github.com/pimutils/mates.rs], a commandline addressbook supporting vdir.

	vdirel [https://github.com/DamienCassou/vdirel], access vdir contacts from Emacs.

Servers

	Baikal

	DavMail (Exchange, Outlook)

	FastMail

	Google

	iCloud

	nextCloud

	ownCloud

	Radicale

	Xandikos

Vdirsyncer with Claws Mail

First of all, Claws-Mail only supports read-only functions for vCards. It
can only read contacts, but there’s no editor.

Preparation

We need to install vdirsyncer, for that look here. Then
we need to create some folders:

mkdir ~/.vdirsyncer
mkdir ~/.contacts

Configuration

Now we create the configuration for vdirsyncer. Open
~/.vdirsyncer/config with a text editor. The config should look like
this:

[general]
status_path = "~/.vdirsyncer/status/"

[storage local]
type = "singlefile"
path = "~/.contacts/%s.vcf"

[storage online]
type = "carddav"
url = "CARDDAV_LINK"
username = "USERNAME"
password = "PASSWORD"
read_only = true

[pair contacts]
a = "local"
b = "online"
collections = ["from a", "from b"]
conflict_resolution = "b wins"

	In the general section, we define the status folder path, for discovered
collections and generally stuff that needs to persist between syncs.

	In the local section we define that all contacts should be sync in a single
file and the path for the contacts.

	In the online section you must change the url, username and password to your
setup. We also set the storage to read-only such that no changes get
synchronized back. Claws-Mail should not be able to do any changes anyway,
but this is one extra safety step in case files get corrupted or vdirsyncer
behaves erratically. You can leave that part out if you want to be able to
edit those files locally.

	In the last section we configure that online contacts win in a conflict
situation. Configure this part however you like. A correct value depends on
which side is most likely to be up-to-date.

Sync

Now we discover and sync our contacts:

vdirsyncer discover contacts
vdirsyncer sync contacts

Claws Mail

Open Claws-Mail. Go to Tools => Addressbook.

Click on Addressbook => New vCard. Choose a name for the book.

Then search for the for the vCard in the folder ~/.contacts/. Click
ok, and you we will see your contacts.

Note

Claws-Mail shows only contacts that have a mail address.

Crontab

On the end we create a crontab, so that vdirsyncer syncs automatically
every 30 minutes our contacts:

crontab -e

On the end of that file enter this line:

*/30 * * * * /usr/local/bin/vdirsyncer sync > /dev/null

And you’re done!

Running as a systemd.timer

vdirsyncer includes unit files to run at an interval (by default every 15±5
minutes).

Note

These are not installed when installing via pip, only via distribution
packages. If you installed via pip, or your distribution doesn’t ship systemd
unit files, you’ll need to download vdirsyncer.service [https://raw.githubusercontent.com/pimutils/vdirsyncer/main/contrib/vdirsyncer.service] and vdirsyncer.timer [https://raw.githubusercontent.com/pimutils/vdirsyncer/main/contrib/vdirsyncer.timer]
into either /etc/systemd/user/ or ~/.local/share/systemd/user.

Activation

To activate the timer, just run systemctl --user enable vdirsyncer.timer.
To see logs of previous runs, use journalctl --user -u vdirsyncer.

Configuration

It’s quite possible that the default “every fifteen minutes” interval isn’t to
your liking. No default will suit everybody, but this is configurable by simply
running:

systemctl --user edit vdirsyncer.timer

This will open a blank editor, where you can override the timer by including:

OnBootSec=5m # This is how long after boot the first run takes place.
OnUnitActiveSec=15m # This is how often subsequent runs take place.

Todoman

The iCalendar format also supports saving tasks in form of VTODO-entries,
with the same file extension as normal events: .ics. Many CalDAV servers
support synchronizing tasks, vdirsyncer does too.

todoman [http://todoman.readthedocs.io/] is a CLI task manager supporting vdir. Its interface is
similar to the ones of Taskwarrior or the todo.txt CLI app. You can use
filesystem with it.

Setting up vdirsyncer

For this tutorial we will use NextCloud.

Assuming a config like this:

[general]
status_path = "~/.vdirsyncer/status/"

[pair calendars]
conflict_resolution = "b wins"
a = "calendars_local"
b = "calendars_dav"
collections = ["from b"]
metadata = ["color", "displayname"]

[storage calendars_local]
type = "filesystem"
path = "~/.calendars/"
fileext = ".ics"

[storage calendars_dav]
type = "caldav"
url = "https://nextcloud.example.net/"
username = "..."
password = "..."

vdirsyncer sync will then synchronize the calendars of your NextCloud [https://nextcloud.com/]
instance to subfolders of ~/.calendar/.

Setting up todoman

Write this to ~/.config/todoman/todoman.conf:

[main]
path = ~/.calendars/*

The glob [https://en.wikipedia.org/wiki/Glob_(programming)] pattern in path will match all subfolders in ~/.calendars/,
which is exactly the tasklists we want. Now you can use todoman as
described in its documentation [http://todoman.readthedocs.io/] and run vdirsyncer sync to synchronize the changes to NextCloud.

Other clients

The following client applications also synchronize over CalDAV:

	The Tasks-app found on iOS

	OpenTasks for Android [https://github.com/dmfs/opentasks]

	The Tasks [https://apps.nextcloud.com/apps/tasks]-app for NextCloud’s web UI

Baikal

Vdirsyncer is continuously tested against the latest version of Baikal [http://sabre.io/baikal/].

	Baikal up to 0.2.7 also uses an old version of SabreDAV, with the same
issue as ownCloud, see issue #160 [https://github.com/pimutils/vdirsyncer/issues/160]. This issue is fixed in later versions.

DavMail (Exchange, Outlook)

DavMail [http://davmail.sourceforge.net/] is a proxy program that allows you to use Card- and CalDAV clients
with Outlook. That allows you to use vdirsyncer with Outlook.

In practice your success with DavMail may wildly vary. Depending on your
Exchange server you might get confronted with weird errors of all sorts
(including data-loss).

Make absolutely sure you use the latest DavMail:

[storage outlook]
type = "caldav"
url = "http://localhost:1080/users/user@example.com/calendar/"
username = "user@example.com"
password = "..."

	Older versions of DavMail handle URLs case-insensitively. See issue #144 [https://github.com/pimutils/vdirsyncer/issues/144].

	DavMail is handling malformed data on the Exchange server very poorly. In
such cases the Calendar Checking Tool for Outlook [https://www.microsoft.com/en-us/download/details.aspx?id=28786] might
help.

	In some cases, you may see errors about duplicate events. It may look
something like this:

error: my_calendar/calendar: Storage "my_calendar_remote/calendar" contains multiple items with the same UID or even content. Vdirsyncer will now abort the synchronization of this collection, because the fix for this is not clear; It could be the result of a badly behaving server. You can try running:
error:
error: vdirsyncer repair my_calendar_remote/calendar
error:
error: But make sure to have a backup of your data in some form. The offending hrefs are:
[...]

In order to fix this, you can try the Remove-DuplicateAppointments.ps1 [https://blogs.msdn.microsoft.com/emeamsgdev/2015/02/12/powershell-remove-duplicate-calendar-appointments/]
PowerShell script that Microsoft has come up with in order to remove duplicates.

FastMail

Vdirsyncer is continuously tested against FastMail [https://www.fastmail.com/], thanks to them for
providing a free account for this purpose. There are no known issues with it.
FastMail’s support pages [https://www.fastmail.com/help/technical/servernamesandports.html] provide
the settings to use:

[storage cal]
type = "caldav"
url = "https://caldav.fastmail.com/"
username = "..."
password = "..."

[storage card]
type = "carddav"
url = "https://carddav.fastmail.com/"
username = "..."
password = "..."

Google

Using vdirsyncer with Google Calendar is possible as of 0.10, but it is not
tested frequently. You can use google_contacts and
google_calendar.

For more information see issue #202 [https://github.com/pimutils/vdirsyncer/issues/202] and issue #8 [https://github.com/pimutils/vdirsyncer/issues/8].

iCloud

Vdirsyncer is regularly tested against iCloud [https://www.icloud.com/].

[storage cal]
type = "caldav"
url = "https://caldav.icloud.com/"
username = "..."
password = "..."

[storage card]
type = "carddav"
url = "https://contacts.icloud.com/"
username = "..."
password = "..."

Problems:

	Vdirsyncer can’t do two-factor auth with iCloud (there doesn’t seem to be a
way to do two-factor auth over the DAV APIs) You’ll need to use app-specific
passwords [https://support.apple.com/en-us/HT204397] instead.

	iCloud has a few special requirements when creating collections. In principle
vdirsyncer can do it, but it is recommended to create them from an Apple
client (or the iCloud web interface).

	iCloud requires a minimum length of collection names.

	Calendars created by vdirsyncer cannot be used as tasklists.

nextCloud

Vdirsyncer is continuously tested against the latest version of nextCloud [https://nextcloud.com/]:

[storage cal]
type = "caldav"
url = "https://nextcloud.example.com/"
username = "..."
password = "..."

[storage card]
type = "carddav"
url = "https://nextcloud.example.com/"

	WebCAL-subscriptions can’t be discovered by vdirsyncer. See this relevant
issue [https://github.com/nextcloud/calendar/issues/63].

ownCloud

Vdirsyncer is continuously tested against the latest version of ownCloud [https://owncloud.org/]:

[storage cal]
type = "caldav"
url = "https://example.com/remote.php/dav/"
username = ...
password = ...

[storage card]
type = "carddav"
url = "https://example.com/remote.php/dav/"
username = ...
password = ...

	Versions older than 7.0.0: ownCloud uses SabreDAV, which had problems
detecting collisions and race-conditions. The problems were reported and are
fixed in SabreDAV’s repo, and the corresponding fix is also in ownCloud since
7.0.0. See issue #16 [https://github.com/pimutils/vdirsyncer/issues/16] for more information.

Radicale

Radicale [http://radicale.org/] is a very lightweight server, however, it intentionally doesn’t
implement the CalDAV and CardDAV standards completely, which might lead to
issues even with very well-written clients. Apart from its non-conformity with
standards, there are multiple other problems with its code quality and the way
it is maintained. Consider using e.g. Xandikos instead.

That said, vdirsyncer is continuously tested against the git version and the
latest PyPI release of Radicale.

	Vdirsyncer can’t create collections on Radicale.

	Radicale doesn’t support time ranges in the calendar-query of CalDAV [https://github.com/Kozea/Radicale/issues/146], so setting start_date
and end_date for caldav will have no or unpredicted
consequences.

	Versions of Radicale older than 0.9b1 choke on RFC-conform queries for all
items of a collection [https://github.com/Kozea/Radicale/issues/143].

You have to set item_types = ["VTODO", "VEVENT"] in
caldav for vdirsyncer to work with those versions.

Xandikos

Xandikos [https://github.com/jelmer/xandikos] is a lightweight, yet complete CalDAV and CardDAV server, backed by
git. Vdirsyncer is continuously tested against its latest version.

After running ./bin/xandikos --defaults -d $HOME/dav, you should be able to
point vdirsyncer against the root of Xandikos like this:

[storage cal]
type = "caldav"
url = "https://xandikos.example.com/"
username = "..."
password = "..."

[storage card]
type = "carddav"
url = "https://xandikos.example.com/"
username = "..."
password = "..."

Known Problems

For any unanswered questions or problems, see Support and Contact.

Requests-related ImportErrors

ImportError: No module named packages.urllib3.poolmanager

ImportError: cannot import name iter_field_objects

Debian and nowadays even other distros make modifications to the requests
package that don’t play well with packages assuming a normal requests. This
is due to stubbornness on both sides.

See issue #82 [https://github.com/pimutils/vdirsyncer/issues/82] and issue #140 [https://github.com/pimutils/vdirsyncer/issues/140] for past discussions. You have one option to work
around this, that is, to install vdirsyncer in a virtual environment, see
Manual installation.

Contributing to this project

Note

	Please read Support and Contact for questions and support requests.

	All participants must follow the pimutils Code of Conduct [http://pimutils.org/coc].

The issue tracker

We use GitHub issues [https://github.com/pimutils/vdirsyncer/issues] for
organizing bug reports and feature requests.

The following labels [https://github.com/pimutils/vdirsyncer/labels] are of
interest:

	“Planning” is for issues that are still undecided, but where at least some
discussion exists.

	“Blocked” is for issues that can’t be worked on at the moment because some
other unsolved problem exists. This problem may be a bug in some software
dependency, for instance.

	“Ready” contains issues that are ready to work on.

If you just want to get started with contributing, the “ready” issues are an
option. Issues that are still in “Planning” are also an option, but require
more upfront thinking and may turn out to be impossible to solve, or at least
harder than anticipated. On the flip side those tend to be the more interesting
issues as well, depending on how one looks at it.

All of those labels are also available as a kanban board on waffle.io [https://waffle.io/pimutils/vdirsyncer]. It is really just an alternative
overview over all issues, but might be easier to comprehend.

Feel free to contact me or comment on the relevant issues for
further information.

Reporting bugs

	Make sure your problem isn’t already listed in Known Problems.

	Make sure you have the absolutely latest version of vdirsyncer. For users of
some Linux distributions such as Debian or Fedora this may not be the version
that your distro offers. In those cases please file a bug against the distro
package, not against upstream vdirsyncer.

	Use --verbosity=DEBUG when including output from vdirsyncer.

Suggesting features

If you’re suggesting a feature, keep in mind that vdirsyncer tries not to be a
full calendar or contacts client, but rather just the piece of software that
synchronizes all the data. Take a look at the documentation for software
working with vdirsyncer.

Submitting patches, pull requests

	Discuss everything in the issue tracker first (or contact me somehow
else) before implementing it.

	Make sure the tests pass. See below for running them.

	But not because you wrote too few tests.

	Add yourself to AUTHORS.rst, and add a note to CHANGELOG.rst too.

Running tests, how to set up your development environment

For many patches, it might suffice to just let CI run the tests. However,
CI is slow, so you might want to run them locally too. For this, set up a
virtualenv [http://virtualenv.readthedocs.io/] and run this inside of it:

Install development dependencies, including:
- vdirsyncer from the repo into the virtualenv
- stylecheckers (ruff) and code formatters (black)
make install-dev

Install git commit hook for some extra linting and checking
pre-commit install

Then you can run:

pytest # The normal testsuite
pre-commit run --all # Run all linters (which also run via pre-commit)
make -C docs html # Build the HTML docs, output is at docs/_build/html/
make -C docs linkcheck # Check docs for any broken links

The Makefile has a lot of options that allow you to control which tests are
run, and which servers are tested. Take a look at its code where they are all
initialized and documented.

To tests against a specific DAV server, use DAV_SERVER:

make DAV_SERVER=xandikos test

The server will be initialised in a docker container and terminated at the end
of the test suite.

If you have any questions, feel free to open issues about it.

Structure of the testsuite

Within tests/, there are three main folders:

	system contains system- and also integration tests. A rough rule is: If
the test is using temporary files, put it here.

	unit, where each testcase tests a single class or function.

	storage runs a generic storage testsuite against all storages.

The reason for this separation is: We are planning to generate separate
coverage reports for each of those testsuites. Ideally unit would generate
palatable coverage of the entire codebase on its own, and the combination
of system and storage as well.

The Vdir Storage Format

This document describes a standard for storing calendars and contacts on a
filesystem, with the main goal of being easy to implement.

Vdirsyncer synchronizes to vdirs via filesystem. Each vdir
(basically just a directory with some files in it) represents a calendar or
addressbook.

Basic Structure

The main folder (root) contains an arbitrary number of subfolders
(collections), which contain only files (items). Synonyms for “collection” may
be “addressbook” or “calendar”.

An item is:

	A vCard [https://tools.ietf.org/html/rfc6350] file, in which case the file extension must be .vcf, or

	An iCalendar [https://tools.ietf.org/html/rfc5545] file, in which case the file extension must be .ics.

An item should contain a UID property as described by the vCard and
iCalendar standards. If it contains more than one UID property, the values
of those must not differ.

The file must contain exactly one event, task or contact. In most cases this
also implies only one VEVENT/VTODO/VCARD component per file, but
e.g. recurrence exceptions would require multiple VEVENT components per
event.

The filename should have similar properties as the UID of the file content.
However, there is no requirement for these two to be the same. Programs may
choose to store additional metadata in that filename, however, at the same time
they must not assume that the metadata they included will be preserved by
other programs.

Metadata

Any of the below metadata files may be absent. None of the files listed below
have any file extensions.

	A file called color inside the vdir indicates the vdir’s color, a
property that is only relevant in UI design.

Its content is an ASCII-encoded hex-RGB value of the form #RRGGBB. For
example, a file content of #FF0000 indicates that the vdir has a red
(user-visible) color. No short forms or informal values such as red (as
known from CSS, for example) are allowed. The prefixing # must be
present.

	Files called displayname and description contain a UTF-8 encoded label/
description, that may be used to represent the vdir in UIs.

	A file called order inside the vdir includes the relative order
of the calendar, a property that is only relevant in UI design.

Writing to vdirs

Creating and modifying items or metadata files should happen atomically [https://en.wikipedia.org/wiki/Atomicity_%28programming%29].

Writing to a temporary file on the same physical device, and then moving it to
the appropriate location is usually a very effective solution. For this
purpose, files with the extension .tmp may be created inside collections.

When changing an item, the original filename must be used.

Reading from vdirs

	Any file ending with the .tmp or no file extension must not be treated
as an item.

	The ident part of the filename should not be parsed to improve the
speed of item lookup.

Considerations

The primary reason this format was chosen is due to its compatibility with the
CardDAV [http://tools.ietf.org/html/rfc6352] and CalDAV [http://tools.ietf.org/search/rfc4791] standards.

Performance

Currently, vdirs suffer from a rather major performance problem, one which
current implementations try to mitigate by building up indices of the
collections for faster search and lookup.

The reason items’ filenames don’t contain any extra information is simple: The
solutions presented induced duplication of data, where one duplicate might
become out of date because of bad implementations. As it stands right now, an
index format could be formalized separately though.

vdirsyncer doesn’t really have to bother about efficient item lookup, because
its synchronization algorithm needs to fetch the whole list of items anyway.
Detecting changes is easily implemented by checking the files’ modification
time.

Packaging guidelines

Thank you very much for packaging vdirsyncer! The following guidelines should
help you to avoid some common pitfalls.

If you find yourself needing to patch anything, or going in a different direction,
please open an issue so we can also address in a way that works for everyone. Otherwise
we get bug reports for code or scenarios that don’t exist in upstream vdirsycner.

Obtaining the source code

The main distribution channel is PyPI [https://pypi.python.org/pypi/vdirsyncer], and source tarballs can be
obtained there. We mirror the same package tarball and wheel as GitHub
releases. Please do not confuse these with the auto-generated GitHub “Source
Code” tarball. Those are missing some important metadata and your build will fail.

We give each release a tag in the git repo. If you want to get notified of new
releases, GitHub’s feed [https://github.com/pimutils/vdirsyncer/releases.atom] is a good way.

Tags will be signed by the maintainer who is doing the release (starting with
0.16.8), and generation of the tarball and wheel is done by CI. Hence, only the
tag itself is signed.

Dependency versions

As with most Python packages, setup.py denotes the dependencies of
vdirsyncer. It also contains lower-bound versions of each dependency. Older
versions will be rejected by the testsuite.

Testing

Everything testing-related goes through the Makefile in the root of the
repository or PyPI package. Trying to e.g. run pytest directly will
require a lot of environment variables to be set (for configuration) and you
probably don’t want to deal with that.

You can install the all development dependencies with:

make install-dev

You probably don’t want this since it will use pip to download the
dependencies. Alternatively you can find the testing dependencies in
test-requirements.txt, again with lower-bound version requirements.

You also have to have vdirsyncer fully installed at this point. Merely
cd-ing into the tarball will not be sufficient.

Running the tests happens with:

pytest

Hypothesis will randomly generate test input. If you care about deterministic
tests, set the DETERMINISTIC_TESTS variable to "true":

make DETERMINISTIC_TESTS=true test

There are a lot of additional variables that allow you to test vdirsyncer
against a particular server. Those variables are not “stable” and may change
drastically between minor versions. Just don’t use them, you are unlikely to
find bugs that vdirsyncer’s CI hasn’t found.

Documentation

Using Sphinx you can generate the documentation you’re reading right now in a
variety of formats, such as HTML, PDF, or even as a manpage. That said, I only
take care of the HTML docs’ formatting.

You can find a list of dependencies in docs-requirements.txt. Again, you
can install those using pip with:

pip install -r docs-requirements.txt

Then change into the docs/ directory and build whatever format you want
using the Makefile in there (run make for the formats you can build).

Contrib files

Reference systemd.service and systemd.timer unit files are provided. It
is recommended to install this if your distribution is systemd-based.

Support and Contact

	The #pimutils IRC channel on Libera.Chat [https://pimutils.org/contact]
might be active, depending on your timezone. Use it for support and general
(including off-topic) discussion.

	Open a GitHub issue [https://github.com/pimutils/vdirsyncer/issues/] for
concrete bug reports and feature requests.

	Lastly, you can also contact the author directly [https://unterwaditzer.net/contact.html]. Do this for security issues. If
that doesn’t work out (i.e. if I don’t respond within one week), use
contact@pimutils.org.

Changelog

This changelog only contains information that might be useful to end users and
package maintainers. For further info, see the git commit log.

Package maintainers and users who have to manually update their installation
may want to subscribe to GitHub’s tag feed [https://github.com/pimutils/vdirsyncer/tags.atom].

Version 0.19.3

	Fix crash when running vdirsyncer repair on a collection. issue #1019 [https://github.com/pimutils/vdirsyncer/issues/1019]

Version 0.19.2

	Improve the performance of SingleFileStorage. issue #818 [https://github.com/pimutils/vdirsyncer/issues/818]

	Properly document some caveats of the Google Contacts storage.

	Fix crash when using auth certs. issue #1033 [https://github.com/pimutils/vdirsyncer/issues/1033]

	The filesystem storage can be specified with type =
"filesystem/icalendar" or type = "filesystem/vcard". This has not
functional impact, and is merely for forward compatibility with the Rust
implementation of vdirsyncer.

	Python 3.10 and 3.11 are officially supported.

	Instructions for integrating with Google CalDav/CardDav have changed.
Applications now need to be registered as “Desktop applications”. Using “Web
application” no longer works due to changes on Google’s side. issue #1078 [https://github.com/pimutils/vdirsyncer/issues/1078]

Version 0.19.1

	Fixed crash when operating on Google Contacts. issue #994 [https://github.com/pimutils/vdirsyncer/issues/994]

	The HTTP_PROXY and HTTPS_PROXY are now respected. issue #1031 [https://github.com/pimutils/vdirsyncer/issues/1031]

	Instructions for integrating with Google CalDav/CardDav have changed.
Applications now need to be registered as “Web Application”. issue #975 [https://github.com/pimutils/vdirsyncer/issues/975]

	Various documentation updates.

Version 0.19.0

	Add “shell” password fetch strategy to pass command string to a shell.

	Add “description” and “order” as metadata. These fetch the CalDAV:
calendar-description, CardDAV:addressbook-description and
apple-ns:calendar-order properties respectively.

	Add a new showconfig status. This prints some configuration values as
JSON. This is intended to be used by external tools and helpers that interact
with vdirsyncer, and considered experimental.

	Update TLS-related tests that were failing due to weak MDs. issue #903 [https://github.com/pimutils/vdirsyncer/issues/903]

	pytest-httpserver and trustme are now required for tests.

	pytest-localserver is no longer required for tests.

	Multithreaded support has been dropped. The "--max-workers has been removed.

	A new asyncio backend is now used. So far, this shows substantial speed
improvements in discovery and metasync, but little change in sync.
This will likely continue improving over time. issue #906 [https://github.com/pimutils/vdirsyncer/issues/906]

	The google storage types no longer require requests-oauthlib, but
require python-aiohttp-oauthlib instead.

	Vdirsyncer no longer includes experimental support for EteSync [https://www.etesync.com/]. The existing integration had not been supported
for a long time and no longer worked. Support for external storages may be
added if anyone is interested in maintaining an EteSync plugin. EteSync
users should consider using etesync-dav [https://github.com/etesync/etesync-dav].

	The plist for macOS has been dropped. It was broken and homebrew
generates their own based on package metadata. macOS users are encouraged to
use that as a reference.

Changes to SSL configuration

Support for md5 and sha1 certificate fingerprints has been dropped. If
you’re validating certificate fingerprints, use sha256 instead.

When using a custom verify_fingerprint, CA validation is always disabled.

If verify_fingerprint is unset, CA verification is always active. Disabling
both features is insecure and no longer supported.

The verify parameter no longer takes boolean values, it is now optional and
only takes a string to a custom CA for verification.

The verify and verify_fingerprint will likely be merged into a single
parameter in future.

Version 0.18.0

Note: Version 0.17 has some alpha releases but ultimately was never finalised.
0.18 actually continues where 0.16 left off.

	Support for Python 3.5 and 3.6 has been dropped. This release mostly focuses
on keeping vdirsyncer compatible with newer environments.

	click 8 and click-threading 0.5.0 are now required.

	For those using pipsi, we now recommend using pipx, it’s successor.

	Python 3.9 is now supported.

	Our Debian/Ubuntu build scripts have been updated. New versions should be
pushed to those repositories soon.

Version 0.16.8

released 09 June 2020

	Support Python 3.7 and 3.8.

This release is functionally identical to 0.16.7.
It’s been tested with recent Python versions, and has been marked as supporting
them. It will also be the final release supporting Python 3.5 and 3.6.

Version 0.16.7

released on 19 July 2018

	Fixes for Python 3.7

Version 0.16.6

released on 13 June 2018

	Packagers: Documentation building no longer needs a working installation
of vdirsyncer.

Version 0.16.5

released on 13 June 2018

	Packagers: click-log 0.3 is required.

	All output will now happen on stderr (because of the upgrade of click-log).

Version 0.16.4

released on 05 February 2018

	Fix tests for new Hypothesis version. (Literally no other change included)

Version 0.16.3

released on 03 October 2017

	First version with custom Debian and Ubuntu packages. See issue #663 [https://github.com/pimutils/vdirsyncer/issues/663].

	Remove invalid ASCII control characters from server responses. See issue #626 [https://github.com/pimutils/vdirsyncer/issues/626].

	packagers: Python 3.3 is no longer supported. See pull request #674 [https://github.com/pimutils/vdirsyncer/pull/674].

Version 0.16.2

released on 24 August 2017

	Fix crash when using daterange or item_type filters in
google_calendar, see issue #657 [https://github.com/pimutils/vdirsyncer/issues/657].

	Packagers: Fixes for new version 0.2.0 of click-log. The version
requirements for the dependency click-log changed.

Version 0.16.1

released on 8 August 2017

	Removed remoteStorage support, see issue #647 [https://github.com/pimutils/vdirsyncer/issues/647].

	Fixed test failures caused by latest requests version, see issue #660 [https://github.com/pimutils/vdirsyncer/issues/660].

Version 0.16.0

released on 2 June 2017

	Strip METHOD:PUBLISH added by some calendar providers, see issue #502 [https://github.com/pimutils/vdirsyncer/issues/502].

	Fix crash of Google storages when saving token file.

	Make DAV discovery more RFC-conformant, see pull request #585 [https://github.com/pimutils/vdirsyncer/pull/585].

	Vdirsyncer is now tested against Xandikos, see pull request #601 [https://github.com/pimutils/vdirsyncer/pull/601].

	Subfolders with a leading dot are now ignored during discover for
filesystem storage. This makes it easier to combine it with version
control.

	Statuses are now stored in a sqlite database. Old data is automatically
migrated. Users with really large datasets should encounter performance
improvements. This means that sqlite3 is now a dependency of vdirsyncer.

	Vdirsyncer is now licensed under the 3-clause BSD license, see issue #610 [https://github.com/pimutils/vdirsyncer/issues/610].

	Vdirsyncer now includes experimental support for EteSync [https://www.etesync.com/], see pull request #614 [https://github.com/pimutils/vdirsyncer/pull/614].

	Vdirsyncer now uses more filesystem metadata for determining whether an item
changed. You will notice a possibly heavy CPU/IO spike on the first sync
after upgrading.

	Packagers: Reference systemd.service and systemd.timer unit files
are provided. It is recommended to install these as documentation if your
distribution is systemd-based.

Version 0.15.0

released on 28 February 2017

	Deprecated syntax for configuration values is now completely rejected. All
values now have to be valid JSON.

	A few UX improvements for Google storages, see issue #549 [https://github.com/pimutils/vdirsyncer/issues/549] and issue #552 [https://github.com/pimutils/vdirsyncer/issues/552].

	Fix collection discovery for google_contacts, see issue #564 [https://github.com/pimutils/vdirsyncer/issues/564].

	iCloud is now tested on Travis, see issue #567 [https://github.com/pimutils/vdirsyncer/issues/567].

Version 0.14.1

released on 05 January 2017

	vdirsyncer repair no longer changes “unsafe” UIDs by default, an extra
option has to be specified. See issue #527 [https://github.com/pimutils/vdirsyncer/issues/527].

	A lot of important documentation updates.

Version 0.14.0

released on 26 October 2016

	vdirsyncer sync now continues other uploads if one upload failed. The
exit code in such situations is still non-zero.

	Add partial_sync option to pair section. See the config docs.

	Vdirsyncer will now warn if there’s a string without quotes in your config.
Please file issues if you find documentation that uses unquoted strings.

	Fix an issue that would break khal’s config setup wizard.

Version 0.13.1

released on 30 September 2016

	Fix a bug that would completely break collection discovery.

Version 0.13.0

released on 29 September 2016

	Python 2 is no longer supported at all. See issue #219 [https://github.com/pimutils/vdirsyncer/issues/219].

	Config sections are now checked for duplicate names. This also means that you
cannot have a storage section [storage foo] and a pair [pair foo] in
your config, they have to have different names. This is done such that
console output is always unambiguous. See issue #459 [https://github.com/pimutils/vdirsyncer/issues/459].

	Custom commands can now be used for conflict resolution during sync. See
issue #127 [https://github.com/pimutils/vdirsyncer/issues/127].

	http now completely ignores UIDs. This avoids a lot of unnecessary
down- and uploads.

Version 0.12.1

released on 20 August 2016

	Fix a crash for Google and DAV storages. See pull request #492 [https://github.com/pimutils/vdirsyncer/pull/492].

	Fix an URL-encoding problem with DavMail. See issue #491 [https://github.com/pimutils/vdirsyncer/issues/491].

Version 0.12

released on 19 August 2016

	singlefile now supports collections. See pull request #488 [https://github.com/pimutils/vdirsyncer/pull/488].

Version 0.11.3

released on 29 July 2016

	Default value of auth parameter was changed from guess to basic
to resolve issues with the Apple Calendar Server (issue #457 [https://github.com/pimutils/vdirsyncer/issues/457]) and improve
performance. See issue #461 [https://github.com/pimutils/vdirsyncer/issues/461].

	Packagers: The click-threading requirement is now >=0.2. It was
incorrect before. See issue #478 [https://github.com/pimutils/vdirsyncer/issues/478].

	Fix a bug in the DAV XML parsing code that would make vdirsyncer crash on
certain input. See issue #480 [https://github.com/pimutils/vdirsyncer/issues/480].

	Redirect chains should now be properly handled when resolving well-known
URLs. See pull request #481 [https://github.com/pimutils/vdirsyncer/pull/481].

Version 0.11.2

released on 15 June 2016

	Fix typo that would break tests.

Version 0.11.1

released on 15 June 2016

	Fix a bug in collection validation.

	Fix a cosmetic bug in debug output.

	Various documentation improvements.

Version 0.11.0

released on 19 May 2016

	Discovery is no longer automatically done when running vdirsyncer sync.
vdirsyncer discover now has to be explicitly called.

	Add a .plist example for Mac OS X.

	Usage under Python 2 now requires a special config parameter to be set.

	Various deprecated configuration parameters do no longer have specialized
errormessages. The generic error message for unknown parameters is shown.

	Vdirsyncer no longer warns that the passwordeval parameter has been
renamed to password_command.

	The keyring fetching strategy has been dropped some versions ago, but
the specialized error message has been dropped.

	An old status format from version 0.4 is no longer supported. If you’re
experiencing problems, just delete your status folder.

Version 0.10.0

released on 23 April 2016

	New storage types google_calendar and google_contacts
have been added.

	New global command line option –config, to specify an alternative config
file. See issue #409 [https://github.com/pimutils/vdirsyncer/issues/409].

	The collections parameter can now be used to synchronize
differently-named collections with each other.

	Packagers: The lxml dependency has been dropped.

	XML parsing is now a lot stricter. Malfunctioning servers that used to work
with vdirsyncer may stop working.

Version 0.9.3

released on 22 March 2016

	singlefile and http now handle recurring events
properly.

	Fix a typo in the packaging guidelines.

	Moved to pimutils organization on GitHub. Old links should redirect,
but be aware of client software that doesn’t properly handle redirects.

Version 0.9.2

released on 13 March 2016

	Fixed testsuite for environments that don’t have any web browser installed.
See pull request #384 [https://github.com/pimutils/vdirsyncer/pull/384].

Version 0.9.1

released on 13 March 2016

	Removed leftover debug print statement in vdirsyncer discover, see commit
3d856749f37639821b148238ef35f1acba82db36.

	metasync will now strip whitespace from the start and the end of the
values. See issue #358 [https://github.com/pimutils/vdirsyncer/issues/358].

	New Packaging Guidelines have been added to the documentation.

Version 0.9.0

released on 15 February 2016

	The collections parameter is now required in pair configurations.
Vdirsyncer will tell you what to do in its error message. See issue #328 [https://github.com/pimutils/vdirsyncer/issues/328].

Version 0.8.1

released on 30 January 2016

	Fix error messages when invalid parameter fetching strategy is used. This is
important because users would receive awkward errors for using deprecated
keyring fetching.

Version 0.8.0

released on 27 January 2016

	Keyring support has been removed, which means that password.fetch =
["keyring", "example.com", "myuser"] doesn’t work anymore.

For existing setups: Use password.fetch = ["command", "keyring", "get",
"example.com", "myuser"] instead, which is more generic. See the
documentation for details.

	Now emitting a warning when running under Python 2. See issue #219 [https://github.com/pimutils/vdirsyncer/issues/219].

Version 0.7.5

released on 23 December 2015

	Fixed a bug in remotestorage that would try to open a CLI browser
for OAuth.

	Fix a packaging bug that would prevent vdirsyncer from working with newer
lxml versions.

Version 0.7.4

released on 22 December 2015

	Improved error messages instead of faulty server behavior, see issue #290 [https://github.com/pimutils/vdirsyncer/issues/290] and
issue #300 [https://github.com/pimutils/vdirsyncer/issues/300].

	Safer shutdown of threadpool, avoid exceptions, see issue #291 [https://github.com/pimutils/vdirsyncer/issues/291].

	Fix a sync bug for read-only storages see commit
ed22764921b2e5bf6a934cf14aa9c5fede804d8e.

	Etag changes are no longer sufficient to trigger sync operations. An actual
content change is also necessary. See issue #257 [https://github.com/pimutils/vdirsyncer/issues/257].

	remotestorage now automatically opens authentication dialogs in
your configured GUI browser.

	Packagers: lxml>=3.1 is now required (newer lower-bound version).

Version 0.7.3

released on 05 November 2015

	Make remotestorage-dependencies actually optional.

Version 0.7.2

released on 05 November 2015

	Un-break testsuite.

Version 0.7.1

released on 05 November 2015

	Packagers: The setuptools extras keyring and remotestorage have
been added. They’re basically optional dependencies. See setup.py for
more details.

	Highly experimental remoteStorage support has been added. It may be
completely overhauled or even removed in any version.

	Removed mentions of old password_command in documentation.

Version 0.7.0

released on 27 October 2015

	Packagers: New dependencies are click_threading, click_log and
click>=5.0.

	password_command is gone. Keyring support got completely overhauled. See
Storing passwords.

Version 0.6.0

released on 06 August 2015

	password_command invocations with non-zero exit code are now fatal (and
will abort synchronization) instead of just producing a warning.

	Vdirsyncer is now able to synchronize metadata of collections. Set metadata
= ["displayname"] and run vdirsyncer metasync.

	Packagers: Don’t use the GitHub tarballs, but the PyPI ones.

	Packagers: build.sh is gone, and Makefile is included in
tarballs. See the content of Makefile on how to run tests post-packaging.

	verify_fingerprint doesn’t automatically disable verify anymore.

Version 0.5.2

released on 15 June 2015

	Vdirsyncer now checks and corrects the permissions of status files.

	Vdirsyncer is now more robust towards changing UIDs inside items.

	Vdirsyncer is now handling unicode hrefs and UIDs correctly. Software that
produces non-ASCII UIDs is broken, but apparently it exists.

Version 0.5.1

released on 29 May 2015

	N.b.: The PyPI upload of 0.5.0 is completely broken.

	Raise version of required requests-toolbelt to 0.4.0.

	Command line should be a lot faster when no work is done, e.g. for help
output.

	Fix compatibility with iCloud again.

	Use only one worker if debug mode is activated.

	verify=false is now disallowed in vdirsyncer, please use
verify_fingerprint instead.

	Fixed a bug where vdirsyncer’s DAV storage was not using the configured
useragent for collection discovery.

Version 0.4.4

released on 12 March 2015

	Support for client certificates via the new auth_cert
parameter, see issue #182 [https://github.com/pimutils/vdirsyncer/issues/182] and pull request #183 [https://github.com/pimutils/vdirsyncer/pull/183].

	The icalendar package is no longer required.

	Several bugfixes related to collection creation.

Version 0.4.3

released on 20 February 2015

	More performance improvements to singlefile-storage.

	Add post_hook param to filesystem-storage.

	Collection creation now also works with SabreDAV-based servers, such as
Baikal or ownCloud.

	Removed some workarounds for Radicale. Upgrading to the latest Radicale will
fix the issues.

	Fixed issues with iCloud discovery.

	Vdirsyncer now includes a simple repair command that seeks to fix some
broken items.

Version 0.4.2

released on 30 January 2015

	Vdirsyncer now respects redirects when uploading and updating items. This
might fix issues with Zimbra.

	Relative status_path values are now interpreted as relative to the
configuration file’s directory.

	Fixed compatibility with custom SabreDAV servers. See issue #166 [https://github.com/pimutils/vdirsyncer/issues/166].

	Catch harmless threading exceptions that occur when shutting down vdirsyncer.
See issue #167 [https://github.com/pimutils/vdirsyncer/issues/167].

	Vdirsyncer now depends on atomicwrites.

	Massive performance improvements to singlefile-storage.

	Items with extremely long UIDs should now be saved properly in
filesystem-storage. See issue #173 [https://github.com/pimutils/vdirsyncer/issues/173].

Version 0.4.1

released on 05 January 2015

	All create arguments from all storages are gone. Vdirsyncer now asks if
it should try to create collections.

	The old config values True, False, on, off and None are
now invalid.

	UID conflicts are now properly handled instead of ignoring one item. Card-
and CalDAV servers are already supposed to take care of those though.

	Official Baikal support added.

Version 0.4.0

released on 31 December 2014

	The passwordeval parameter has been renamed to password_command.

	The old way of writing certain config values such as lists is now gone.

	Collection discovery has been rewritten. Old configuration files should be
compatible with it, but vdirsyncer now caches the results of the collection
discovery. You have to run vdirsyncer discover if collections were added
or removed on one side.

	Pair and storage names are now restricted to certain characters. Vdirsyncer
will issue a clear error message if your configuration file is invalid in
that regard.

	Vdirsyncer now supports the XDG-Basedir specification. If the
VDIRSYNCER_CONFIG environment variable isn’t set and the
~/.vdirsyncer/config file doesn’t exist, it will look for the
configuration file at $XDG_CONFIG_HOME/vdirsyncer/config.

	Some improvements to CardDAV and CalDAV discovery, based on problems found
with FastMail. Support for .well-known-URIs has been added.

Version 0.3.4

released on 8 December 2014

	Some more bugfixes to config handling.

Version 0.3.3

released on 8 December 2014

	Vdirsyncer now also works with iCloud. Particularly collection discovery and
etag handling were fixed.

	Vdirsyncer now encodes Cal- and CardDAV requests differently. This hasn’t
been well-tested with servers like Zimbra or SoGo, but isn’t expected to
cause any problems.

	Vdirsyncer is now more robust regarding invalid responses from CalDAV
servers. This should help with future compatibility with Davmail/Outlook.

	Fix a bug when specifying item_types of caldav in the
deprecated config format.

	Fix a bug where vdirsyncer would ignore all but one character specified in
unsafe_href_chars of caldav and carddav.

Version 0.3.2

released on 3 December 2014

	The current config format has been deprecated, and support for it will be
removed in version 0.4.0. Vdirsyncer warns about this now.

Version 0.3.1

released on 24 November 2014

	Fixed a bug where vdirsyncer would delete items if they’re deleted on side A
but modified on side B. Instead vdirsyncer will now upload the new items to
side A. See issue #128 [https://github.com/pimutils/vdirsyncer/issues/128].

	Synchronization continues with the remaining pairs if one pair crashes, see
issue #121 [https://github.com/pimutils/vdirsyncer/issues/121].

	The processes config key is gone. There is now a --max-workers option
on the CLI which has a similar purpose. See pull request #126 [https://github.com/pimutils/vdirsyncer/pull/126].

	The Read The Docs-theme is no longer required for building the docs. If it is
not installed, the default theme will be used. See issue #134 [https://github.com/pimutils/vdirsyncer/issues/134].

Version 0.3.0

released on 20 September 2014

	Add verify_fingerprint parameter to http, caldav
and carddav, see issue #99 [https://github.com/pimutils/vdirsyncer/issues/99] and pull request #106 [https://github.com/pimutils/vdirsyncer/pull/106].

	Add passwordeval parameter to General Section, see issue #108 [https://github.com/pimutils/vdirsyncer/issues/108] and
pull request #117 [https://github.com/pimutils/vdirsyncer/pull/117].

	Emit warnings (instead of exceptions) about certain invalid responses from
the server, see issue #113 [https://github.com/pimutils/vdirsyncer/issues/113]. This is apparently required for compatibility
with Davmail.

Version 0.2.5

released on 27 August 2014

	Don’t ask for the password of one server more than once and fix multiple
concurrency issues, see issue #101 [https://github.com/pimutils/vdirsyncer/issues/101].

	Better validation of DAV endpoints.

Version 0.2.4

released on 18 August 2014

	Include workaround for collection discovery with latest version of Radicale.

	Include metadata files such as the changelog or license in source
distribution, see issue #97 [https://github.com/pimutils/vdirsyncer/issues/97] and issue #98 [https://github.com/pimutils/vdirsyncer/issues/98].

Version 0.2.3

released on 11 August 2014

	Vdirsyncer now has a --version flag, see issue #92 [https://github.com/pimutils/vdirsyncer/issues/92].

	Fix a lot of bugs related to special characters in URLs, see issue #49 [https://github.com/pimutils/vdirsyncer/issues/49].

Version 0.2.2

released on 04 August 2014

	Remove a security check that caused problems with special characters in DAV
URLs and certain servers. On top of that, the security check was nonsensical.
See issue #87 [https://github.com/pimutils/vdirsyncer/issues/87] and issue #91 [https://github.com/pimutils/vdirsyncer/issues/91].

	Change some errors to warnings, see issue #88 [https://github.com/pimutils/vdirsyncer/issues/88].

	Improve collection autodiscovery for servers without full support.

Version 0.2.1

released on 05 July 2014

	Fix bug where vdirsyncer shows empty addressbooks when using CardDAV with
Zimbra.

	Fix infinite loop when password doesn’t exist in system keyring.

	Colorized errors, warnings and debug messages.

	vdirsyncer now depends on the click package instead of argvard.

Version 0.2.0

released on 12 June 2014

	vdirsyncer now depends on the icalendar package from PyPI, to get rid of
its own broken parser.

	vdirsyncer now also depends on requests_toolbelt. This makes it possible
to guess the authentication type instead of blankly assuming basic.

	Fix a semi-bug in caldav and carddav storages where a tuple (href, etag)
instead of the proper etag would have been returned from the upload method.
vdirsyncer might do unnecessary copying when upgrading to this version.

	Add the storage singlefile. See issue #48 [https://github.com/pimutils/vdirsyncer/issues/48].

	The collections parameter for pair sections now accepts the special
values from a and from b for automatically discovering collections.
See Pair Section.

	The read_only parameter was added to storage sections. See
Storage Section.

Version 0.1.5

released on 14 May 2014

	Introduced changelogs

	Many bugfixes

	Many doc fixes

	vdirsyncer now doesn’t necessarily need UIDs anymore for synchronization.

	vdirsyncer now aborts if one collection got completely emptied between
synchronizations. See issue #42 [https://github.com/pimutils/vdirsyncer/issues/42].

Credits and License

Contributors

In alphabetical order:

	Ben Boeckel

	Christian Geier

	Clément Mondon

	Corey Hinshaw

	Hugo Osvaldo Barrera

	Julian Mehne

	Malte Kiefer

	Marek Marczykowski-Górecki

	Markus Unterwaditzer

	Michael Adler

	rEnr3n

	Thomas Weißschuh

	Witcher01

Special thanks goes to:

	FastMail [https://github.com/pimutils/vdirsyncer/issues/571] sponsors a
paid account for testing their servers.

	Packagecloud [https://packagecloud.io/] provide repositories for
vdirsyncer’s Debian packages.

License

Copyright (c) 2014-2020 by Markus Unterwaditzer & contributors. See
AUTHORS.rst for more details.

Some rights reserved.

Redistribution and use in source and binary forms of the software as well
as documentation, with or without modification, are permitted provided
that the following conditions are met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

	The names of the contributors may not be used to endorse or
promote products derived from this software without specific
prior written permission.

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE AND DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Donations

vdirsyncer is and will always be free and open source software. We appreciate
sponsors willing to fund our continued work on it.

If you found my work useful, please consider donating. Thank you!

	Bitcoin: 13p42uWDL62bNRH3KWA6cSpSgvnHy1fs2E.

	Sponsor via one-time tips or recurring donations via Ko-fi [https://ko-fi.com/whynothugo].

	Sponsor via recurring donations via liberapay [https://liberapay.com/WhyNotHugo/].

Index

 C
 | F
 | G
 | H
 | S

C

 	
 	
 caldav

 	storage

 	
 	
 carddav

 	storage

F

 	
 	
 filesystem

 	storage

G

 	
 	
 google_calendar

 	storage

 	
 	
 google_contacts

 	storage

H

 	
 	
 http

 	storage

S

 	
 	
 singlefile

 	storage

 	
 storage

 	caldav

 	carddav

 	filesystem

 	google_calendar

 	google_contacts

 	http

 	singlefile

 _static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 vdirsyncer

 		
 When do I need Vdirsyncer?

 		
 Why not Dropbox + todo.txt?

 		
 Why not file sync (Dropbox, git, …) + vdir?

 		
 Installation

 		
 OS/distro packages

 		
 Manual installation

 		
 pipx: The clean, easy way

 		
 The dirty, easy way

 		
 The clean, hard way

 		
 Tutorial

 		
 Installation

 		
 Configuration

 		
 More Configuration

 		
 Conflict resolution

 		
 Metadata synchronization

 		
 More information about collections

 		
 Advanced collection configuration (server-to-server sync)

 		
 SSL and certificate validation

 		
 Pinning by fingerprint

 		
 Custom root CAs

 		
 Client Certificates

 		
 Storing passwords

 		
 Command

 		
 Accessing the system keyring

 		
 Password Prompt

 		
 Syncing with read-only storages

 		
 Step 1: Create the target calendar

 		
 Step 2: Creating the config

 		
 Step 3: The partial_sync parameter

 		
 Full configuration manual

 		
 General Section

 		
 Pair Section

 		
 Storage Section

 		
 Supported Storages

 		
 Other tutorials

 		
 Client applications

 		
 Vdirsyncer with Claws Mail

 		
 Running as a systemd.timer

 		
 Todoman

 		
 Servers

 		
 Baikal

 		
 DavMail (Exchange, Outlook)

 		
 FastMail

 		
 Google

 		
 iCloud

 		
 nextCloud

 		
 ownCloud

 		
 Radicale

 		
 Xandikos

 		
 Known Problems

 		
 Requests-related ImportErrors

 		
 Contributing to this project

 		
 The issue tracker

 		
 Reporting bugs

 		
 Suggesting features

 		
 Submitting patches, pull requests

 		
 Running tests, how to set up your development environment

 		
 Structure of the testsuite

 		
 The Vdir Storage Format

 		
 Basic Structure

 		
 Metadata

 		
 Writing to vdirs

 		
 Reading from vdirs

 		
 Considerations

 		
 Performance

 		
 Packaging guidelines

 		
 Obtaining the source code

 		
 Dependency versions

 		
 Testing

 		
 Documentation

 		
 Contrib files

 		
 Support and Contact

 		
 Changelog

 		
 Version 0.19.3

 		
 Version 0.19.2

 		
 Version 0.19.1

 		
 Version 0.19.0

 		
 Changes to SSL configuration

 		
 Version 0.18.0

 		
 Version 0.16.8

 		
 Version 0.16.7

 		
 Version 0.16.6

 		
 Version 0.16.5

 		
 Version 0.16.4

 		
 Version 0.16.3

 		
 Version 0.16.2

 		
 Version 0.16.1

 		
 Version 0.16.0

 		
 Version 0.15.0

 		
 Version 0.14.1

 		
 Version 0.14.0

 		
 Version 0.13.1

 		
 Version 0.13.0

 		
 Version 0.12.1

 		
 Version 0.12

 		
 Version 0.11.3

 		
 Version 0.11.2

 		
 Version 0.11.1

 		
 Version 0.11.0

 		
 Version 0.10.0

 		
 Version 0.9.3

 		
 Version 0.9.2

 		
 Version 0.9.1

 		
 Version 0.9.0

 		
 Version 0.8.1

 		
 Version 0.8.0

 		
 Version 0.7.5

 		
 Version 0.7.4

 		
 Version 0.7.3

 		
 Version 0.7.2

 		
 Version 0.7.1

 		
 Version 0.7.0

 		
 Version 0.6.0

 		
 Version 0.5.2

 		
 Version 0.5.1

 		
 Version 0.4.4

 		
 Version 0.4.3

 		
 Version 0.4.2

 		
 Version 0.4.1

 		
 Version 0.4.0

 		
 Version 0.3.4

 		
 Version 0.3.3

 		
 Version 0.3.2

 		
 Version 0.3.1

 		
 Version 0.3.0

 		
 Version 0.2.5

 		
 Version 0.2.4

 		
 Version 0.2.3

 		
 Version 0.2.2

 		
 Version 0.2.1

 		
 Version 0.2.0

 		
 Version 0.1.5

 		
 Credits and License

 		
 Contributors

 		
 License

 		
 Donations

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

